If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+20n-2022=0
a = 5; b = 20; c = -2022;
Δ = b2-4ac
Δ = 202-4·5·(-2022)
Δ = 40840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40840}=\sqrt{4*10210}=\sqrt{4}*\sqrt{10210}=2\sqrt{10210}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{10210}}{2*5}=\frac{-20-2\sqrt{10210}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{10210}}{2*5}=\frac{-20+2\sqrt{10210}}{10} $
| 88/c=11 | | O=4=n/5 | | x×10=60 | | 0.10x+0.55=0.44x-0.13 | | s-23=s-13 | | 90+x=90 | | 2x+1.7+x2.4=180+x2.4 | | 3x^{2}-10=80 | | x⁴=100 | | -2/3x-5=12 | | |10-2x|+6=20 | | z=z-42 | | z-42=z | | (5.6-y)-y=1.8 | | -12x+3=-27 | | 25+2a=42 | | x²+12x-50=0 | | 6=2√x(64) | | 3600=2x^2 | | 1/7y-5=-7 | | 6(x–12)+2x=8(x–9) | | 6^x+3^x=9^x | | 9t^2-50t+25=0 | | 6t+3=3t=15 | | 165=2x+5 | | 2x–1=19–3x | | z^2=1.4/10.2 | | 55=2x+5/3 | | A=2x³-4x²=x-2 | | 9t^2-1250t+625=0 | | 2x-20=2(3x+2) | | 28-5=2+3(3x) |